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The basic methods of interpolation theory were constructed to give
quantitative results about norms of operators. It was, however, soon
discovered .that qualitative properties like compactness, degree of
compactness, and weak compactness could also be interpolated. In this
survey, we have collected and ordered some of this (partly very new)
knowledge. ’

1. Introduction

The theory of interpolation spaces has its origin in the classical theorem of
Riesz-Thorin. The Riesz-Thorin theorem states that if po, py, g0, ) € [1, =] and
Po#p1, qo# q1 and that T': Ly — L, with norm Mg and T': Ly — Ly; with norm

M), then T': L, — Ly with norm M such that

MMy M) %
provided 6 € (0, 1), i.e. log M is convex. An application of this theorem to Fourier
transforms yields the Hausdarff-Young Inequality. In' complex analysis, the
conclusion of the Hadamard three circle theorem is like equation (*). On the other
hand, in approximation theory, as we show later, Bernstein or Jackson type
inequalities can be rewritten as convexily inequalities (*) of Riesz-Thorin. In-the
following we consider s-numbers for "degree of compactness”, measure of
non-compactness and weak measure of non-compactness and look at the convexity

inequalities of type (*) for these concepts.
Some results about interpolation of cigenvalues are presented due to the close
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relationships between eigenvalues of compact operators and s-numbers and

representation of radius of the essential spectrum in term§ of measures of

non-compactness. :

2. s-numbers, Entropy Numb ers

) The concept of s numbsrs was invented by E. Schmidth in 1907, where he
established a representation for integral operators induced by arbitrary continuous
kernels. He referred to these quantities as eigenvalues. Later, in 1937 F. Smithies
used the term singular value, For a long time, the understanding was: =

The sequence of s numbers The sequence of the

of an operator acting on a = eigenvalues of the

Hilbert space positive operator | Tl = (TF') 2

After the formulation of D.E. Allakhverdicv in 1957 as
o, (M) =inf (I T~ L1I: Le L(H), rank (L) <n)

it became possible to extend. this notion to operators acting on Banach spaces,
According to Pietsch [25], a map § which to.each bounded linear map T from one

Banach space to another such space assigns 4 unique sequence (s, (7)) is called an

s-function if for all Banach spaces E, F, G, Wthe following conditions are satisfied:
NTl=s5(MD2s2(N2... >0, forallTe L(E,F).
(i) 5 (S+T) €6y ) + 1 Tk, for S, Te L(& F) and all n & N.
(i) 50 (RS <R W5, ) I Tl for T'e L(E, F), S € L(F.O)Re LG, W)
andne N. _ ’
(V)1 Te L(E F)andrank (T) <n € N, then s, (T)=0.
*i(v) 5, ()= ¥ for all ne N, where [ is the identity map of B={(xe Fix=0
if i>n) toitself. ' -
S
called additive if
Syt S+ S5 (S) #5m (D), S T LEF).

Similarly, an s-function is called multiplicative, if
Sysiv1 (ST) S $p () S (N, Te L(EF), Se L(F,G).

(T) is called the n-th s-number of the operator T. Moreover, an s-function is

AT R Y [ S S )
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multiplicative; s-numbers charactérize the "degree. of compac!ness" as wcll as thc'

s-NUMBERS, MEASURE AND WEAK MEASURE ... 17

Now we turn to some special s~numbe;s. Their definition are:
-Approximation numbers : |
&, (T) =inf (1 T=5 Il : rank (S)Sn} T Se L(E F).

: -Gclf.md numbers:
e (T) = inf (I TJj7 | Codim (M)<n}, Te £(E, F)

where Jﬂ is the embedding ‘map from Minto E, -

-Kolmogorov numbers (or n-widths): ‘
dy (7 :=inf {1l @y Tl : dim (N) < n), T'e’ £ (E, )

K bt .
where Qp is the canonical map from Fto F/N.

Observe that Kolmogorov numbers dy (), n=1,2,... can also be defined as,

dy(T):= inf sup inf | Tx—yll,
Nc[' erE YeN

where N is an arl:ulr.:ry subsPacc of F with’ dlm N<n. Thc above deﬁmtmn of
Ko[mogornv numbers illustrates the fact that how "good" the Jmagc T(BE) can, be

approximated by (n—1)- dimenswnal subspaces of F

In Hilbert spaces, all s-number sequences comcldc “In- Banach space, the
approximation numbers are the largest. For relations between several kinds of
s-numbers we refer to [26]. ‘The s-numbers listed abovc are both addmve and

radius of the essential spectrum [17). . e : k

‘Let Te L(E, F)-and let n & N: The nth entrdiay numbef é,, (N lof Tis defingd__- :
o ) iy i . ¥ R AR

en (T) :=inf (£>0: _T(Er-._‘) C__“L—: ‘ _(_?,-+an'-) fcir some’y; & F-, ;= 1,"2, ,;,:-_' 2"?‘1} .

The seE Bg and Br denote thc closad unit balls of Eand F rcspectlvely

 “Since NTlh=ey (DSey(N2...20, for TE L(E, F) the sequence (e,, (T)) is
monotone decreasing as n increases, and so the limit exists. Clcarly,
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lim e, (D) =inf (€>0: T (Bg) can be covered by finitely many balls of radius e}
n=oo .

Therefore limyyee, (1) =B (1) where B(N)=B(T(Bp):= inf{e»0: T(Bp)

c:ufz.l B (y;; €)) is the ball measure of non-compactness of T, B (y;; €) stands for
the ball center at y;& F and radius €, In [2], it is proved that lim,_y.. d, (T) =B (7).

We also know % B (1)< ¢ (M) <2 (7) holds [10],

The following gives an estimate between s-numbers and the dyadic entropy ;
numbers.

THEOREM 1 ([6]) Let p € (0, o) and s & {a,¢,d). Then for all Banach spaces E -
and F and all T L(E, F), the inequlatiy '

sup km’ek(T)Spl, sup k]/psk(D.forn=l.2.
1sk<n 15k<n

isvalid .
3. Eigenvalues

Recently a great deal of work has been done to relate the analytical cntities |
related to bounded linear maps such as eigenvalues, essential spectrum, and the
‘geometrical quantitics such as cntropy numbers, approximation numbers and
n-widths, Although these connections are interesting in themselves, there is a definite
use of this theory in the theory of partial differential cquations.

Also using various s-numbers or entropy numbers one can deseribe "degree of
compactness” for an operator. But one would like to describe certain characteristics |
for the "degree of compactness" which imply a good approximation as well ag good
behaviour for- its eigenvalues. In this section we only sketch the most important |

tesults in this dircction, Those readers intercsted in the Full theory can consult Peitsch
[25].or Konig [13].

Throughout this paper E, F will denote the complex Banach space. Suppose |

.Te L(E) is compact, Compact operators have strikingly nice properties, In
particular, the specttum of T, apart from the point 0, consists solely of eigenvalues of -
finite algebraic multiplicity. n (A; 7) :=dim (xe E: (AT - T)k =0 for some k}. Also ;
the set of cigenvalues does not possess any accumulation point different from zero. :

Consequently, for every compact operator T € £ (E), one can associate its eigenvalue-,
sequence (A, (7)) which is defined as follows : i

(i) Every cigenvalue A # 0-is counted according to its multiplicity i.e. it occurs |
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n (A; T) times, one after the other.
(ii) The eigenvalues are arranged in order of non-increasing magnitude, i.e. ,
IM(M121MI12... 20,
(iii) If T has less than n ¢i genvalues A # 0 then set A, (T) :=0.
We start with the following remarkable formula dué to Konig [14].

THEOREM 2 Let T e L (E) be compact. Then for all n € N,

(D= lim  [a, (7"
k—yoa

Notice that for = 1, this is the spectral radius formula since a) (T) =Il Tll. The proof
uses induction on n Lo establish

lim sup [ay (TN <Ry (N1 tim inf (a, (7%
k—yoa k=00

details can be found in [14],

If H is a complex Hilbert space for Te L(H) compact we set |Tl=U|TI
where U is a partial isometry. So if T is compact so is | T, by the ideal property. it is
known that for the Hilbert space case with | T | compact on E, for all n € N we have
an (T) =X, (IT'l), where (A, (IT1) is the eigenvalue sequence for | 71, But cven in
this Hilbert space case no inequality of the form g, (T) 2 (<) | A, ()| forall ne N

can be expected. For example, E = Cz dct Te L(C'2 ) can be represented by [2 ?]

thenA; (T) =2, (T =1. But| TP — L: has eigcnvaluu-Si\[S_
so.ap (M=A (T =V3+V5 >2=| l(leandaz =M (M) =v3-V5 <1=
A2 (M1

In contrast to approximation numbers, there is an cstimate for a single
eigenvalue A, (7) in terms of a single entropy number ¢, (7). The following theorem
is due to Carl [6].

‘THEOREM 3 Let T'e L(E) be a compact operator and let (A, (1)) be-an
eigenvalue sequence. Then forallm, ne N

Ae (DT MM < 02" ™M en(D).
sl

Note that by taking m =n + 1, the above theorem gives the inequality
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”‘-::(T)]s-\,z—enﬂ (7). -

This theorem éiéo gives rise to the folloWing corollary due to Zemanek [30]-
COROLLARY 1 Let Te K(X). Then, forall n e N, '

i 73
r= lim (e,(1%)
k—yoo
the spectrial radius of T.

It should be mentioned that for a compact operator acting on a Hilbert space H,
one has the following well known Wey_l inquality:

Tt 1 (D P STy g (1)

which shows that if the approximation numbers from a sequence in I” with 0 < P <oa,
then so do the eigenvalues. Here are some other versions of the Weyl inequality:

additive Weyl inequality St M (NP <5y a (1)
forn=1,2,.. L 'y
muliplicative Weyl inequality Mt 1 (P < Ty ag (1)
forn=1,2, ...

Also, inequalities of the type

/p

(e iy (7_)!"’)% <K (3 (1)

exist in Banach space settings. Here Te L(E) must be compact, p & (0, =) and the
constant X, depends only on p.

; ; - Again m the setting of a generallBanach space, using Lorentz sequence spaces
L1 q=(l;, Lo)p, ¢ Edmunds gives [10], a simple proof of the Weyl inequality. He
1-6°

“shows that if the n-th approximation number is O (1) for some a> 0, as n — oo,
then so is the n-th eigenvalue,

Let K be the closed ideal of compact operators on a Banach space E. The

quotient algebra £ (E)/ X is a Banach algebra called the Calkin algebra. The
essential spectrum g, (T) of T'is defined by:
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o, (1) ={Le C:m(A—T)is nt invertible in L(E)/ K}

where 7 is the natural homomorphism from £ (E) one L(E)/ X, Nussbaum [22] nses
the concept of ball measurement of noncompactness to obtain a formula for 7, (7),

the radius of the essential spectrum. Namely, he shows that

rM=tlim @""”"

e

where as before ﬁ(']) denotes the ball measure of non-compactness of 7. Several
papers were written, such as [16], [9], to show that:

(M= lim (s(T)

Ji—do2

1/n

where s € {¢,d} and ¢ (T) =1im, ¢, (Tj. d(T) = lim, d, (7). ﬁ_\lso, in [1] one ﬁr_1ds the
minimum conditions on the s-numbers in order for the above equation to hold.

4. Interpolation Spaces

Let E=(Ep E|) be a Banach couple, ie. Ep and E) are Banach spaces
continuously imbedded into 2 Hausdorff topological'vgcmr space. For a Banach
couple E ={Eg, E;} we can form the infersection A(E)=Eyn E; and the sum
Z (E) =Ey+ E;. They are both Banach spaces with the norms : -

Il @ llachy = max (Il allg, llallg)

and
llallggiy =K (1 a; E)

respectively. Here for 1> 0
‘Kt a E) =inf (llap "E.u-i- tlhay ”El fa=ap+ai, a € Ey,a; € E;)
is the K-functional of Peetre. ‘ . _
A Banach space E is called an intermediate space between Ep and E, (or with
respect to E)if -~

AB)cEcE(A),

and the corresponding embeddings are continuous. If in addition every bounded
" operator in X (E) that leave Egand Ey invariant also maps E-boundedly into itself,
then E is called an interpolation space between Eg and Ey (o with respect to E ).
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Let £({Ey, E1}, {Fo, F1}) be the Banach space of all operators T': Eg+ Ej
= Fo+ F such that the restriction of T to the space E; is a bounded operafor from E;
into F;, i =0; 1, with norms :

0Tl &), (R, 7y =max {1 Tgy, gy 10 T, g W}

We say two intermediate spaces E and F are interpolation spaces of exponent
0(0<0<1) if given any Te L({Ey, Ey}, {Fo, Fy}) the restriction of T to E is in
L(E. F) and

I Te, pIl < Tg, 7, 11 T, 1O
There are several methods [20] of constructing interpolation spaces of exponent

0 with respect to Banach pairs Eand F The real method is defined as follows : for
0<6<1 and1<p<os,ifp<en:

1/
E -0 dt
Eg p=(Eq, E’)P.P= (ae Eg+Ey:la I]e.,,-,—'[f:[t Kt a)]PT) < o)
ifp=l;°thcn

Ege=(En, E\)gm=(a€ Eg+E;:lallge=sup t-BK(t. a) <eo},
O<t<en

It can.be shown thatif a € Eyn Ej, then
lalg,<lalg, lalf, .
" Here are some classical examples of interpolation spaces [21] :
1) (L, LoYe,g =Ly, (Lorentz space) if}l, =1-0,then0<0<1 .
Note that in particular
Ly, p =L, (Lebesque space)
Lpe= L;, (Weak Lebesque or Marcinkiewicz space)

; 1 1-6 6 .
- 2)if po, p1 € [1,.00] and —=——+—with 0<8< 1, then
) if po, p1 € [1,.00] ey

(W @), W (@), = W (@)
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where Wk'p (Q), forpe [I, =), k=0, 1,2, o QcR" denote the Sobolev space of all
fet’ (€2) which have Duffor 0 <lal-<kand for which

Wflkp= Etqicll D*Fll, < oo,

In the following discussion we shall refer to the restriction of T 1o
E=(E, Ep)gpm viewed ‘as an clemer!t of L(E,F) where F=(Fp, Filgp as
Tg Fi Tg, £, =0, 1 will have a similar meaning.

Finally, given E and F intermediate spaces with respect to E‘, Fwe say that &
possesses K-type 6, 8 € (0, 1), if there is a positive constant ¢ such that for all z € E
andallt>0 i

K(t:a)SctallaliE forallae E,

F possesses J-type 6, there is a positive constant ¢ such that

IbUpSclblF NbIR forallbe Fyr Fy.

Real interpolation spaces possesses both K-type 8 and-J-type 6. We also have:

THEOREM 4 [25] Let (Q, 1) be any E- finite measure space. Furthermdre' -

suppose that pg, pj € [1, «) and £=-I—-}-,_—6+;'—?—. The* ., (Q W) is an intermediate
: 0 1 . :

space of (Lp, (Q, p), L, (Q, 1)}. Moreover, Ly, (82, 1t) has K-type © and J- type 6.. .

In 1960, Krasnosel'skii [16] proved the following version of the Riesz-Thorin
theorem for compact operators: let T': Lp, = Lp, be bounded and 7': L, — L, be
compact, where all four exponents are in the range [1,ee]and gp< oo, Then
T': Lpy = Ly, is compact too, Here 0'< 0 < | and :

1 1-6 61 1-0

Po P P90 d 4

In light of the Krasnosel'skii theorem it is natural to ask, given two Banach
couples E and F and interpolation spaces E and F obtained by the real method with
respect to E and F whether T viewed as a map from E to F inherits any compactness
properties which it may possess as an element of £ (E}, ) ?

One sided answers wete given by Lions and Peetre [18]. They showec.i th'at‘ if
Fo=Fjand E is of K-type 0 for some 8 € (0, 1), then T: E — Fy is compact if either
T:Ey— FoorT:E| — Fy is compact. They also have similar results when
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Fl

Fy+ Fy and Eg=E,

The general case, in which Ep #E) and Fp# F| was solved by Persson [24]. He
shows that if T: Eg — Fy is éompact s0is T: E— F, To do this he has forced to
make the assumption the {Fg, F;} has certain approximation properties (H). The best
result in this direction was recently proved by Cwikel [8). He shows that if
T:Ey—Fy is compact and ‘T:Ey— Fy is' bounded, then T': (Eo, Eop
= (Fo, Fi)yy is compaét too: For our discussion in the next section we need the
following approximation hypothesis-(H) defiried by Persson. :

Approximation hypothesis-(H): We say that a Banach couple {Fp, F1} has the _
approximation hypothesis-(H), if there exists a positive constant ¢ such that _given any
€ >0 and any finite sets By c ¥y and B c F), there is an operator P € £(F, F) such
that

P(F)cF AR fori=0,1,
DIPlgepySe i=0,1,

3)llx~Prlig <eforall xe Byi=0,1,

Following is an example of an interpojalion pair satisfying the approximation
hypothesis-(#). T o
... PROPOSITION 1 [24] Let X be a locally compact space with. positive measure |1
let po,py e [1,). Then {Ly, X, ), L, (X,w) is an interpolation pair which
satisfies the approximation hypothesis -(H), -+
.. Proof of the ahove proposition can be found in [24], but the idea is to consider
By Ly, By < Lp, finite sets and to et S be the set of all bounded. measurable
functions with compact Support, one may assume By;-B; < S: Let K = ¥be a compact
set in X outside which all fe B, i=0,1 vanish. Choose >0 such that
M -max (I, b (K)) < €. Construct a finite partition (K,) of K consisting of a set
K (Kp) =0 and measurable sets Ky, K, ..., Ky, ‘with 1 (K) >0 and SUPxyek, |f (%)
=fON<Nj=1,2,.,N, and, forall fe D, define

. J, Fan)
R S o ‘z P_f:'E,p.q m LK,

for locally integrable functions f; Then it is obvious that P (Lp) < L, N Lp,i=0,1
aid moreover || P flrzp <l flt’ip‘, IPf= fl, <eforallfe B, '
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5. Real Intéfpélaﬁon, S-numbers, Measure and Weak Measure of
Noncompactness .

In vie‘w of all this work on compact operators, two natural concerns arise: first,
one may like to investigate the behavior under interpolation of weakly compact
operators, ‘sccohdly one. might like to enquire into the behaviour under interpolation
of properties, which may mean more than mere continuity yet not so much as

compactness. The s-numbers and measures of non-compactness come immediately to
mind. '

In this section we focus on these problems. We start with the following theorem
of Pietsch, o Tlaw : o :

" THEOREMS [25]

a) Let E be an intermediate space of {Eg, E)} possessing K-type ©. If
Te L(Z(E), F), then

1-0 o
dﬂ(ﬁ‘ﬂr'l (TE,F) - dn" (TE",F) dﬂ] (TEI,F) '

‘ 1-8 0
eﬂu’\“ﬂ"‘l (TE.F)S 2efln (TE",F) eﬂl (TEi,F) 4

by Let I be an intermediate space of (Fo, F\) possessing J-type 6. If
Te L(E A(F), t'hen TR L 2

b e i L 0
Crypbn =1 (TE,E)SCnﬂ (TE.F"J_ -~ Cny (TE,F‘) )

# -6 0
enyini-1 (TER) S 2e,, (TE.FO) en, (TEF,).

where dy, ¢y, and e, are the Kolmogorov numbers, Gelfand numbers and entropy
numbers respectively. G F :

In order to obtain interpolation theorems for the s-finctions (se {c,d}) in the
general case, where Eq# Ejand Fy# F), Teixeira [27] considers approximation
property-(H) on the space { Fy, Fy ) and proves an inequality of the type

— -8 0
ngin=1 Tep) S ¢ (L Nng+ny = 1) dyy (Tg, ) ™ dy, (TE,7)" -

A corresponding inequality is proved for Gelfand numbers.

Although his estimates are weaker than- thosc established in the above
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' proposition, using the Konig-Zemanek result [14], [30] and the fact that d;, < dyp
foralln € N, he obtains the following.

PROPOSITION 2 [27] Let {Ey, E}} be an interpolation-pair of Banach spaces and
let E= (Ep, E))gp for some 0 € (0, 1) and some p & [1, =). Suppose {Ep, Ey) has the
approximation property-(H). Then [f T € L(E, E), we have

Mot (T <1 (T ) 1y (T, )

forallne N,

The study of interpolation of entropy numbers for the general case when
Eg# Ey and Fy# F| was also done by M.F. Teixeira [28). However, to do this he was

forced to make the assumptions that:
1) {Fo, £} has the approximation property-(H) and
2) the map Tg, , =Eg— Fyis compact.

Under these two conditions, he shows:

1-0 0
engen-1 (TEF) S 2ceny (Tg k) n, (TEF,) -

this. inequality is used to obtain interpolation of the so-called entropy ideals. A
comprehensive account of interpolation of entropy ideals and width ideals is given in
[29]. It should be- mentioned that quasi-Banach ideals associated with the
approximation numbers behave better with respect to interpolation than those
corresponding to other s-numbers. To illustrate this, we need:

DEFINITION. Let [, be the Lorenlz sequence space. Then the Lorentz operator

ideal denoted by L,(,‘Z, (E 'F) is defined as

LgBF) ={Te £(EF): (5, (D) € by} }

@ 17y
| = (Te L8P (T 05, 1) <.
Konig [15] shows that if p, p; € (0, ) and 90,41, g € (0,00) and 0 <O < |, and if

P P pi

. A9 (%) (s)
O Lp11 )00 S Lng
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here s refers to s-ﬁumbcrs. But if s =g the approximati '
‘hypothesis, one has: R SS ma, m S

() () )
(Loge éum)ﬂ.ﬂ e 4(2:
Proof of the above facts can be found in [26].
Next we look as interpolation of measure of non-compactness and measure of
weak non-compactness. It turns out that natural analogues of the results of Lions and

Peetre about one-sided con.,.actness theorems can be carried out to measure or weak
measure of non- compactness.

DEFINITION. Let E and F be Banach spaces, and let D be a bounded subset of E.
The measure of non- compactness of D, 0z (D), is defined by '

oz (D) =inf {€>0: D can be covered by finitely many sets of diameter < ¢)

the ball measure of non-compactness defined in exactly the same way except that
balls of radius < € are used in place of arbitrary sets of diameter < €.

, On the othet hand, the weak measure of non-compactness of D, wg (D), is
defined as: P e

w(D)=wg (D)=inf (e>0: D ceBg+ W, W < E weakly compact)

where Bg denotes the closed unit ball of E. This concept was first introduced by De
Blasi [9]. Nowlet ke R, k20. Amap T'e L(E, F)is called a k-set contraction if and
only if : .

op (T (D)) < ko (D) for all bounded sets D < £,
and B (Tgp) =P (T):=min {k:Tis a k-sct contraction) is called the measure of
non-compactness of . ;

The circle of ideas around k-set contractions is now of proven importance in
* functional analysis and differential equations, The weak k-set contraction and weak
measure of non-compactness of 7, w (7), defined arialogously:

w (D) =w (Tg ) :=min {k : wg (T (D)) Skwg (D) for all bounded sets D c E} ;

this concepi has been applied to obtain fixed boirit theorems [12] and existence
results for differential and functional equgtions in Banach spaces [4].

It is worth mentioning that

1) B (T) =0 if and only if T'is compact"




28 © ASUMANGUVENAKSOY " -:

-+ W(D=0if and only if Tisrelatively weakly compact, = S
2)w (D < (7) where B denotes the bali measure of non-compactness of 7

The following two theorems both ave 2-parts: Part 1 in each was proved by
Edmunds and Teixeira [11), part 2 in each are due to the author of this.paper and L.
Ma]igmnda [3]. . e . .

S ‘IHBORBM 6 Let {Fp, F.‘; 1 be a Banach couple and Eisa ?)_anach space. Suppose
F= o, F1)op possessis a J-type 6 for some Qe (0, 1). If Te £ ({E,E}.{Fy, Fy)),
then L . :

DB(TeA <o B Tir)'™ B (Tes)’,

WA Tar) " wTes)® . . o
etails of the proof are given in [3] and. [lﬁ.’ The main difference between the

proofs of 1) and 2) is ‘the fact that for 2) one.needs to show that for a given Banach
couple {Fo, F|}, if Wpand W are weakly compact sets in the spaces Foartd F
respectively, then W N 4¥ is weakly compact in FonFi - T -

THEOREM 7 Let (E,, Ep} be @ Banach couple and F be a Banach space,
Suppose :E= (&, Evop possesses a*- K-type * 6 Jor “somé” @& (0,1). If

Te. C((Eo, By, (F, F)), then. ‘

DB ct-0™ 00 By )P e
DWTeA <=0 6 o Ty )'™ (a0, -

Concerning the general case where Fg# Ej and - Fg # F requires.a strengthening

_ of Persson's approximation hypothesis-(H), under this assumption, in: [11] it fs. -
proved that ‘

IR 06 L 1 SRR
istﬂ]_e.l e LI

R e

One 'in;terest'ix'x:g: cqx}sequcnpg: of such ippgt_mlit?es for a map Te L({Ep, E| Lo
(Bo:En))is the foligfving: - < Ee T R

CQR.OLLARY 2 Let (Ey,Ey}) be an interpolation. pair. which Satisfies the
approximation hypothesis (H) and let E= (B, Ey)o for some 6 € (0, 1) and some
be(l, ) IfTe £((Ey, E,), (Eg, E))) then for-the radius Of the essential spéctrum




-
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rewe have:  © '
1-8 1}
e (TEE) S (re (TE, 5)) (e (lefl.E,)) .

The proof follows immediately, by taking Eg = Fy, E| = Fy and T placed by /g
for any ne N in the above inequality (**) and using Nussbaums formula

1/
re (T) =limy 0 (B (7)) _ _
Interpolauon of weakly compact operators were investigated hy scvcral authors.
In [20], it is shown that, given pe(l,) and Te L({Eq Ei}, (Fo, F1}) and

E=(Ep, E.}e,,‘ F=(Fo, Fi)gp for some 0& (0,1), one has : T: E— F is wéakly'
compact if and only if T: Egn E|— Fy+ F| is weakly compact. Therefore it is

- natural to ask if one can improve inequalities about weak measure of

non-compactness given in Theorems 6 and 7 above? The following is a partial
answer to this question.

PROPOSITION 3 Let (Eg, E|) be a mech couple and E = (Ey, E|)g o IfEisof
K-type 8, then for every.e > 0, there exists 1 > such that

EFCfBA H+ CB};(I:-)
where Bg, By, and By(gy are unit balls of E, Eo N Ey,-and E@ + E 1 respecuvely

PROOF. E is of K-type 8,0 ¢ (0, 1) if thcrc cxssls a positive conslam c such that
forallae Eand all 1> D

af y DL T

" 2 0
inf [!Iaotl,n-i-tllm g, s a=ag+ay,ape By, ar € E)<ct llallg.

Fix £ >0. Then 3 ije N 2l <-;—: and 2% j< %-c"!-. If x € Bg, then from the above

we obtain

Wag gy +2" ey g, < 2™ + e/

Ndpllg,+2 llay lip, s 2%+ e/

where a=ag+a;=aq +a)’ are such that ap, ay’ € Ey ay, a)’ € Ey. Next observe

!hat ”aol!gn<£ﬂ Let b a- ao a1 "'ao-a()E Eg Thcn Ilb"E" 5"“0"5.3
+II a,,' Ilgn<2’£ On the olhcr hand b=aj—a," thercfore 'H;-IIE-l < lkay Ilg|

+la) llg, < 2 €, which implies that b € Eg N E) and Il b llagg) < max (2. 2’) £. Now
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consider a-b=gy+a’ and "a—b"};(E)S"aoﬂgﬂ-bllal'ﬂgl<e._ Since
a=b+ao+a,'withbeA(i),ao+a1’el‘.(E)wehave .

Bect Bugy+e By
where = max iZI. 2’)8.

The above properties imply the following improvement of Theorem 7, proof of
which can be found in [3).

THEOREM 8 Let {Eq, () be a Banach couple and-E=(Ey, Ey), » for some
8 e (0,1) and p e'[1, ). Suppose Jor every €> 0 there exsits t > 0 such that

' BEC!BM§)+882(E).
If Te L({Ey, E\)}, {F, F)), the

1-0¥ (o V-°
9 ) 1-8 : 10 0
W({Ter) Sw(Tgng ) S % W(Tgne,p) d

where d = max (il Tg, r I}, I T, s ).
6. Bernstein-Jackson-Type Inequalities
6.1 Interpolation and Inequalities of Bernstein-Jackson-Type
When an inequality of the type ’
N TerISTg, p 0T 5 1
appears, there is often a connection with interpolation theory. In the following it is

shown that (5] classicat inequalities of Bernstein and Jackson type in approximation.
theory can be reformulated as a convexily inequality above.

One may write the Bernstein inequality as follows:

sl;'plp’p(x)lSl/suplp(x)l.. J=0,1,2,... M

where T is a one dimensional torus and P (x) is a trigonometric polynomial of degree
at most n. ‘ '

= =,

SRR -

¥

R - %

P

L S - S
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To express (1) as a convexity inequality, define 'E(')'=. {Trié.l polynomials}, E| = |
{continuous, 2n-periodic ~functions}, Eg = {2m-periodic " functions p With

f I
DpeE}, and@= e Although the following three expressions are not norms, if
we set Ttk APPSR T

G4l L+

Ip llg;= (degree of p) ™! 1111y = sup 1p (o)
-

I p llg, = sup 1D/ p (x) 14+
P
We can rewrite the equation (1) above as:

Wpllg, <Upls plE, 0<051,pe By E,.
On the other hand the Jackson Inequality can be expressed as:

inf sup 1 p () - po ()| S en” sup | Djp (%) | @)
T T

where inf is taken over all trignomeric polynomials py of degree at most 1 and p is
2n-periodic, j-times continuously differentiable function.

Using the above notation and setting p =py+ p|, we have the following version '
of (2).

For each p e Ep and for each n, there exists py € Eg, py, € E| with pP=po+p
such that

llpo g, S en’ p g,

Ipilig, Sen” ™ lipl, .

Notice that the above inequalities can also be interpreted as a space possessing
K-type 6.

“K-functional" of the real interpolation has its connections with “best
approximation” in approximation theory [23]. Given a Banach space E and its lipear
subspace F, the best approximation to a is E (a) = E (a; E; F)=infy ll a = b ll. On'the
other hand if we set E = Ey + (E| (direct sum) and F= (b, - b) : b€ Eg E}} then

K(ta)= inf (lag=blig+tlia +blg)=E@E,F)
belF

where 7%= (ap, ay) has a fixed decomposition as a =ap+ ay. In the classical theory,
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£, (a) is related o w(%, a) (modulus of continuity), t!;eref‘ore iti3 natural to except
resulis connecting K-functionals to the modulus of continuity, for results of thig type
we refer to [21], [23), _ N

6.2 s-Numbers and Inequatities ofBemsteln-Jaclthon-Type.-

There are analogies between s-numbers (Kolmogorov, Gelfand, and-
approximation number) and Bernstein numbers of functions. Also, entropy numbers
(more precisely entropy moduli) of operators and the modulus of continuity of
functions are related. In the following we give an example of these analogies (7).

NoTATION. Let E=1; 10,1, pe 1, «), and L., [0, 1] := C[0, 1] ‘denote the
Space of p-summable- and continuous 1-periodic functions respectively. Given

f€ 1510, 1), the ath Bernstein mumber EP (f)is defined as

- Ea()=inflf=1l, n=0,1,2,...

where infimum is taken over all trigonometric ﬁolynomials ¢ with degree (1) <n, n =

L 2, ... Cleady B’ (fy=1 fllp- I f& Ly [0, 1). The modulus of continuity is
defined by o ,

. "
wP (8= sup (,[' 1f G+ Ry-f )P dx]
: O<ialcs (70

Bernstein Inequalities. The Bernstein lnequality for functions f & L; [0, 1] says [18]:
w‘”(f;%)sgt’f&i”)(f), forn = 1L,2,...

from Theorem | we know thatforse {a,c, d} one'hés analogous inequality between
entropy numbers and s-pumbers o analof

%, (n'sgz’.' se(D). forn=12,...

'
B t

Jackson Inequalities. The Jackson inequ'aﬁty for functions f e L; (0, 1] gives [19]:

E) (st w"‘"m;‘), forn=1,2, ...
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If T{acts between Hilbert spaces, one has an analogous inequality for operator, and
s€ {a,c,d}

sp()s2t ey (1), forn=1,2,..

EXAMPLE. ([7]) Let fe L;, [0, 1], p € [1, o] define the convol.uu'on operator T}
by i )

: 1 .
Tf(g)=f*g=fof(x-wg ) dy

This operator Ty may be considered as a map from L; [0, 1] into C"[O 1] [31].

Letse {a, c,d} andfeL [0, 1], pe [1, oa).Then for Ty e L(L,, [0, 13, g {0, ll)the
inequalities

st T) = TN <1 fil, = EP 7
s (T SED (), forn=1,2,.

26, M <L (U f, + W ;11_))

forO<r<es,n=1,2,..are valid,
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